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In this paper, two types of  learning systems, the supervised learning system and the unsupervised 
learning system, are introduced to construct neural-network-based control systems. Both approaches 
are applied to longitudinal motion control of the free-swimming vehicle "PTEROA". 

The supervised learning system is based on the simple concept of learning the behavior of the 
supervisor controller. It is implemented along with a fuzzy controller as the supervisor, and evaluated 
through numerical simulations and experiments. It is shown that the characteristics of the neural 
networks, such as flexibility of the I / 0  selection and saturation of the outputs, provide favorable 
performance to the control system for A UVs. 

The unsupervised learning system, which is called "SONCS", is introduced as an adaptive control 
system. The subsystems and the organizing process of  the controller are described in detail. The 
SONCS is applied to the control problem of the untethered test-bed vehicle PW45, and its 
performance is evaluated through free-swimming tank tests. It is shown that after several times of  
adaptation, the SONCS succeeds in organizing an appropriate controller for horizontal swimming at 
a desired depth. 

Keywords: Adaptive control, self organization, learning control, intelligent motion control, error 
back-propagation, neural networks, underwater vehicles, multilayered neural networks, supervised 
and unsupervised learning, robustness, fuzzy control. 

INTRODUCTION 

The basic concept of artificial neural networks orig- 
inated from the efforts to model brain behaviors in the 
1940's.1 In the past decade their fascinating characteris- 
tics as an information processing tool have been 
demonstrated, especially in the field of pattern recogni- 
tion and optimization problems. 2-4 Their distinctive 
features depend on massive parallelism, nonlinear 
operation and learning ability. 

As artificial neural networks execute through parallel 
distributed processes, they can deal with multi-input 
multi-output (MIMO) systems like Autonomous 
Underwater Vehicles (AUVs). It is expected that they 
can follow the nonlinearity of the hydrodynamic forces 
acting on the vehicle body and the complex interactions 
between the thrusters, the control surfaces, etc. 
Moreover, even if the system dynamics are unknown or 
difficult to represent mathematically, they may be able 
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to handle these kind of complex dynamics adaptively 
using their learning ability. Since AUVs are operated in 
an unstructured environment, these features are 
attractive for an intelligent control system. 

Several attempts have been carried out to make a 
nonlinear adaptive control system using neural 
networks. 5-8 A framework of representation of sequen- 
tial adaptive behaviors using neural networks was first 
suggested by Jordan. s A mathematical aproach which is 
similar to MRAS (Model Referenced Adaptive 
System) was discussed in detail from the system theore- 
tic point of view by Narendra. 8 On control problems of 
the real system, however, there are very few examples 
of implementation of artificial neural networks. 

This paper introduces two types of learning systems 
which utilize neural networks as controllers. The first 
one is a so-called "supervised" learning system which is 
based on a simple concept of learning I/O (input- 
output) relations provided by the supervisor controller 
which has been designed with conventional theories. 9 
This system was investigated as the first step to get to 
the second one, that is, an unsupervised learning 
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Fig. 1. The connectionist model. 

system which can automatically learn the control ac- 
tions which should be taken without a supervisor. A 
general architecture and a procedure of unsupervised 
learning were introduced by the authors 1°'11 and the 
system was named "Self-Organizing Neural-Net- 
Controller System (SONCS)". This system includes a 
neural network called a "Forward Model Network" 
which represents the dynamics of the controlled object. 
The controller network is adaptively adjusted accord- 
ing to error information, which is given by a specified 
evaluation function of motion, calculated from the 
outputs of the forward model. 

Generally speaking, performance of the robotic 
system should be investigated in the real world, not just 
via simulations. The proposed neural-network-based 
control systems are, therefore, applied to longitudinal 
motion control of an actual free-swimming vehicle, the 
"PTE ROA ''~2 and evaluated through tank tests. 

MULTILAYERED NEURAL NETWORKS 
A multilayered neural network, which is called "the 

Connectionist Model", 13 is used as a basic structure in 
this paper. The network consists of some layers, 
namely, an input layer, hidden layers and an output 
layer. Each layer includes several numbers of neurons 
(cf. Fig. 1). When there are no recurrent connections, 
the processing of the i-th neuron of the n-th layer is 
given by: 

U ~ = 2  Wi jn-I Xj"--l--hT,* 
J 

xT=f(uT), 
(a) 

where u7 is the membrane potential, x 7 is the output, 
w~ is the synaptic weight of the connection from the j-th 
neuron of the n-th layer, and h7 is the threshold value. 

f(u) is the output function of the neuron, which is 
sigmoidal except in the input layer, and is defined by: 

u " input layer, 

f(u) = 1/[1 + exp(-u) ]  • others. 
(2) 

The behavior of the network is determined by the set 
of synaptic weights w~ and thresholds values hT. These 
values are changed in order to implement a specific 
function. This process is called learning, which can be 
executed with the following Error Back-Propagation 
method. ~3 Let the potential function E represent the 
summation of the output errors as: 

E=½ Z (ti-°i)2" (3) 
i 

Here, oi is the output of the network corresponding to a 
certain set of inputs and ti is the desired output. The 
objective of learning is to minimize the potential func- 
tion E. According to the maximum gradient scheme, 
each synaptic weight w~ should be changed by A w~). 

OE 
A w~ = - r / ~  = r/dTxT-', (4) 

t,w 0 

where r/is the parameter which determines the speed of 
learning, d~' is the error signal based on the Generalized 
Delta Rule ~3 and is obtained by substituting equations 
(1), (2) and (3) into eqn (4) as: 

I (ti- oi)f' (uT) : output layer, 

( ~ n =  , n n + l  n • 

[ f  (ui) E Ok Wki" others. 
k 

(5) 

To stabilize the iterative calculation of Aw~ in eqn (4), 
the technique proposed by Rumelhart et al. t3 is used 
and is given by: 

Aw~-l(p+ l)=q67xT-l +aAw~)-~(p), (6) 

where Aw~(p) is the changing rate of the synaptic 
weight at the p-th step of the iterative calculation, ct is 
the parameter which determines momentum of learn- 
ing. h~' should be changed in the same manner as eqn 
(6) by substituting 1 for x~ '-~. 

Thus, multilayered neural networks, after training, 
come to represent a nonlinear mapping between input 
and output patterns. When the learning procedure is 
implemented as a built-in mechanism, neural networks 
can automatically acquire new information-processing 
abilities as specified by the given desired outputs. 
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Fig. 2. Supervised learning system. 

SUPERVISED LEARNING SYSTEM 

A neural network can be used as a controller of the 
MIMO system when it involves a mapping between 
state vectors of the system and corresponding control 
actions. In the simplest case, a neural network can 
acquire the ability to represent such a mapping by 
learning the I/O relationship from an appropriate con- 
troller (cf. Fig. 2). Since this controller performs in the 
role of a supervisor, this type of learning system is 
called a "Supervised Learning System". 

The procedures for typical supervised learning are: 

(1) Taking data of motion of the controlled 
object and on control actions of the super- 
visor, 

(2) Assembling teaching samples consisting of a 
certain number of sets of inputs and desired 
outputs which have been derived from the 
data of motion and control action, and 

(3) Updating the synaptic weights by the Error 
Back-Propagation Method. 

SUPERVISED LEARNING FOR PTEROA60 

A neural network for controlling longitudinal motion 
of the PTEROA60 l° is constructed as an example of 
such an implementation and its performance is exam- 
ined experimentally and numerically. PTEROA60 is a 
tethered test-bed (60 cm in length) which was used for 
constructing the PTEROA15012 (cf. Fig. 3). The 
PTEROA150 is a streamlined cruising-type AUV 
which has been developed at the Institute of Industrial 
Science, the University of Tokyo. The shape of the 
longitudinal cross-section at the center line is the 
standard wing section NACA0030 and the transverse 
cross section is approximately oval. Longitudinal 
motion of the vehicle, such as pitching and heaving, are 
controlled with a pair of elevators which are fitted aft of 
the body. The equations of motion of the vehicle were 
investigated by towing tank tests and numerical 
analysis. 14 In the following, the pitching angle, the 
depth and the trimming angle of elevators are repre- 
sented by 0, d and be, respectively, as illustrated in 
Fig. 4. 

A simple "fuzzy" controller is selected as a super- 
visor. Data of the PTEROA60's dynamic behavior are 

determined through numerical simulations. The fuzzy 
controller is constructed so as to maneuver the vehicle 
at the constant depth while minimizing the rate of 
change in depth and pitching. In the simulation, its 
membership functions are tuned to attain the ability to 
at least let the vehicle swim horizontally. The inputs to 
the supervisor controller are the changing rates of 
depth Ad and pitching angle AO, and the output is the 
incremental trimming angle of the elevators A6e. 

The structure and I/Os of the neural network, which 
includes one hidden layer with 5 neurons, are shown in 
Fig. 5. It should be noted that the I/Os are not the same 
as those of the supervisor. It was decided to have the 
output of the neural network be the trimming angle of 
the elevators 6e. This corresponds to the time integral 
of the output of the supervisor controller. As this 
integral is determined by the control calculation of the 
supervisor and the resulting vehicle's motion, the 
neural network will learn the maneuvering actions 
which implictly include information on the vehicle's 
dynamics (cf. Fig. 6). 

Figure 7 shows the results of the numerical simula- 
tion with the supervisor fuzzy controller, with initial 
conditions 0 = 0.2 rad, d = 1 m and ~e = 0 rad. Two 
hundred sets of teaching samples are prepared from 
motion data. To get a controller with satisfactory per- 
formance, synaptic weights are updated 70,000 times by 
the Error Back-Propagation calculation, i.e. eqn (6). 

RESULTS OF SUPERVISED LEARNING 

Numerical simulation 

Figure 8 shows results of the simulation of the vehicle 
motion as controlled by the learned neural network, 
given the same initial conditions as used in the teaching 
samples of Fig. 7. Note that the network reduces the 

Fig. 3. PTEROA150 vehicle being launched for the sea trial. 
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Fig. 4. Longitudinal motion of PTEROA vehicle. 

oscillation of the pitching motion, which is induced 
when controlled by the supervisor. This difference is 
mainly caused by two reasons: the neural network 
involves information on the vehicle's dynamics impli- 
citly as mentioned above, and saturation of outputs of 
neurons due to a sigmoidal feature of the output func- 
tion [eqn (2)] causes moderation of control actions. 

AO, Ad 

Vehicle 
Dynamics 

-U- 
_~ Supervisor 

Fuzzy Controller] ] j  - 1  

\ 
I Controller Network 

\ 
Fig. 6. Supervised learning system for PTEROA60. 

Free-swimming tank test 

In the practical environment, many distrubances 
exist which reduce the stability of motion of the vehicle. 
They consist of mechanical and electrical actuator 
noise, sensor noise, unsteady water flow, etc. In order 
to investigate the effectiveness of the neural network in 
the real world, free-swimming tests are carried out with 
the "PTEROA60" vehicle in a circulating water tank. 
Figures 9 and 10 show results of the tests controlled by 
the supervisor fuzzy controller and the learned neural 
network, respectively. It is interesting that the learned 
neural network succeeds in controlling the vehicle in 
the environment where the supervisor fails. 

Robustness against disturbances 

The supervisor fuzzy controller has been mainly 
tuned based on the designer's instinct and it does not 
involve the information on the vehicle's dynamics. It is, 
therefore, predictable that the controller does not suc- 
ceed in controlling the vehicle in the tank. In contrast, 
the learned neural network has acquired more robust- 
ness against unknown disturbances than the supervisor. 

The performance of the learned neural network and 
the supervisor controller, in particular the behavior 
against disturbance, are compared in numerical simula- 
tions, in which the vehicle is subjected to sinusoidal 
pitching moments of various amplitudes and frequen- 
cies. 

Figure 11 shows the level of the response of the 

Fig. 5. The controller network for PTEROA60. 

vehicle, i.e. the amplitudes of pitching motion divided 
by the applied moment. The supervisor controller has a 
clear peak at about 0.2 Hz. The response level diverges 
to infinity at that frequency when the amplitude of the 
moment is more than 1.0 kgfm. On the other hand, the 
learned neural network does not have such a peak. It 
can be said that the supervisor controller can make the 
pitching motion unstable under the existence of dis- 
turbances with certain frequencies and amplitudes. The 
learned neural network does not inherit this defect, 
mainly because of the two reasons described above. 

It can be concluded that the remarkable difference 
between experimental results by the supervisor fuzzy 
controller and those by the learned neural network is 
due to the fact that an improved controller was 
generated which is more robust to the low-frequency 
disturbances found in a circulating water tank. 
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Fig. 7. Numerical simulation of motion of PTEROA60 controlled by 
the supervisor controller. 
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Fig. 8. Numerical simulation of motion of PTEROA60 controlled by 
the learned neural network. 
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Fig. 10. Experimental results of motion of PTEROA60 controlled by 

the learned neural network (cruising speed is 0.7 m/s). 

UNSUPERVISED LEARNING SYSTEM 

A neural network controller which is only used with a 
supervised learning system is not a very attractive 
approach because of the following limitations. 

(1) The supervised learning system always needs 
a supervisor controller. 

(2) The neural network cannot adapt to the var- 
iation of the controlled object's dynamics 
caused by changes of environment and a state 
of motion. 

(3) When teaching samples are generated only 

~ 0 ~  Fuz - 5 1 -  . . . .  I . . . .  I . . . .  1 

5r, ,,, I , , , ,  ',,, ,- 
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Fig. 9. Experimental results of motion of PTEROA60 controlled by 
the supervisor controller (cruising speed is 0.7m/s)--the vehicle 

collides against the bottom. 

through computer simulations, the equation 
of motion of the controlled object must be 
known accurately. 
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Fig. 12. General architecture of self-organizing neural-net-controller system. 

When the dynamics of the controlled object cannot 
be obtained in advance, or the controlled object is 
operated in such an environment that the object 's 
dynamics may change, some kind of adaptiveness is 
required for the control system. This type of control 
system should be able to know what control actions 
should be taken even as the dynamics of the controlled 
object change. The system should have an appropriate 
adjustment mechanism to keep the controlled object 
stable for various mission objectives. 

With the neural networks, an adaptive control 
system can be constructed by taking advantage of its 
inherent learning ability. The SONCS has been pro- 
posed as a neural-network-based adaptive control 
system, and is considered to be an unsupervised learn- 
ing system because it does not need any supervisor, 
teaching samples, or reference models once it has been 
initially trained. 

The general architecture of the SONCS is illustrated 
in Fig. 12. It consists of four subsystems: 

(1) Controller Network: controls the controlled 
object,  

(2) Forward Model Network: represents the 
dynamics of the controlled object, 

(3) Evaluation and Adaptation Mechanism: 
adjusts the controller network and the for- 
ward model network, and 

(4) Rudimentary Controller: initiates the system. 

The basic concept of this system is to adapt the 
controller network according to backward-propagated 
signals. These backward-propagated signals are in turn 
derived by the evaluation of the resultant motion esti- 
mated by the forward model network. Functions of 
each subsystem and the operation of the whole system 
are described in the following sections. 

Introduction of forward model 
In order  to evaluate the results of control actions, it is 

necessary to establish a subsystem to estimate the 
controlled object 's behavior. A neural network called a 
"Forward Model Network" (cf. Fig. 13) is introduced 
to estimate the forward dynamics of the controlled 

object. The inputs of the network are the state vari- 
ables of the controlled object and the corresponding 
control inputs. The outputs are state variables at the 
next time step, which incude the resulting motions to be 
evaluated. 

When the Connectionist Model has no recurrent 
connections, it can represent a static mapping from the 
input patterns to the output. When the input variables 
completely represent the dynamics of the controlled 
object, this model can be used as a forward model 
network. However,  it is usually impossible to get all of 
the input variables. In such a case, the time historical 
order of the signal patterns should be taken into ac- 
count. This can be realized by a structure with recur- 
rent connections. There are various types of such con- 
nections to which the Error  Back-Propagation Method 
can be applied. Two types of structure were proposed 
by the authors. 10, 11.15 

The first type of the structure includes recurrent 
connections in the input layer (cf. Fig. 14). Since the 
output function of the neurons in the input layer is the 
identity function [cf. eqn (2)], these connections ex- 
plicitly produce outputs which contain information 
from the preceding states. For example, the output of 
the i-th neuron in the input layer is calculated as 
follows: 

O,(t) =f~iO,(t- At) + li(t) 
t - - I  

=plOi(O) + E pTl~(t- r a t ) .  
r - O  

(7) 

State 
Variables 

& 
Control 
Actions 

(at t) 

_ •  Controlled I State Variables 

_ orwa  I I 

Fig. 13. Learning system of the forward model network. 
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Here/~(t) ,  Oi(t) and/~i are the input, the output at the 
time t and the synaptic weight of the recurrent connec- 
tion, respectively. 

The second type includes recurrent connections from 
the hidden layer to the input layer (cf. Fig. 15). The 
neurons, which represent the output of the hidden 
neurons at the previous time step, are added to the 
input layer. The membrane potential of the i-th neuron 
in the hidden layer is calculated as follows: 

u2(t) = Z w)/x)(t) + Z wRx2(t-- At), (8) 
i J 

where wffs are the synaptic weight of the connection 
from the added neurons to the neurons in the hidden 
layer and these from the hidden layer to the input layer 

R are identical. Since wi/can be updated in a similar way 
to the adjustment of the synaptic weights of the normal 
connection, while /~/ cannot be, the amount of the 
effects of the preceding state can be adaptively adjusted 
according to the properties of each sequence of input 
variables. Because of this flexibility which the first one 
does not have, the second type can estimate the output 
of the modeled object over a wide range of frequency. 15 
It should be noted that the first type of structure can be 
organized as a particular case of the second one. 

Evaluation and adaptation 
Let E* denote the evaluation potential which is 

dependent  on the desired behavior of the controlled 
object. The synaptic weights of the controller network 
are updated so as to reduce E*,  i.e. an adaptation of 
the system. The updating value of the synaptic weights 
Aw~ can be calculated as: 

OE* 
A w ~ = - e  Ow~' (9) 

where e is a constant which determines the updating 
rate. 

/A 

: x~ 

w]i 

Fig. 14. Forward model network which has recurrent connections in 
the input layer. 

Fig. 15. Forward model network which has recurrent connections 
from the hidden layer to the input layer. 

Evaluation & Adaptation 
[ c ~  

Optimized 
Controller [ 

Fig. 16. Organizing process of the controller. 

To construct a controller which brings the state 
vector x close to the desired state x,, E* is given by: 

f 
t 

E* = ½ (x- -x t ) rA(x--x , )  dt, (10) 

where A is a positive definite weighting matrix. 
When a controller network and a forward model 

network are connected with each other,  they can be 
treated as a large single network as shown in Fig. 12. 
On the assumption that the forward model is suffi- 
ciently accurate, their outputs will be equal to the state 
variables of the controlled object. 

By substituting the outputs of the forward model for 
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Fig. 17. Controller, forward model and evlauation potential for PW45. 

the state vector x in eqn (10) and by regarding the 
desired state vector x, as the teaching signal, the evalu- 
ation potential is equivalent to the time integral of E in 
eqn (3) of the network treated as a whole. Therefore, 
updating of all the synaptic weights in the controller 
network can be carried out simultaneously, as before, 

if 
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Fig. 18. Fuzzy algorithm for rudimentary control. 
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Fig. 19. Experimental results of motion of PW45 controlled by rudi- 

mentary fuzzy controller (cruising speed is about 1 m/s). 
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Fig. 20. Estimation of the experimental results by forward model 
network. 

using the Error Back-Propagation Method. The propa- 
gated error signals based on the evaluation of motion 
are calculated through the whole network; however 
only the synaptic weights of the connections in the 
controller network should be updated. 

When the dynamics of the controlled object are 
changed, improvement of the forward model network 
is required. This can be done, independently of the 
controller's adaptation, by observing the inputs and 
outputs of the controlled object. 

Organizing process of controller 

In the practical environment, the following two 
schemes for initiation should be included in the system. 

(1) Setting the initial values of the synaptic 
weights of the controller. 

(2) Taking the motion data to make the forward 
model. 

For this purpose, an initiation controller is introduced 
in the SONCS. 

During initiation of the controller network and gen- 
eration of motion data, the state vector of the 
controlled object should be kept within a reasonably 
safe range. For this purpose, an initiation controller is 
used. It is not necessary for this controller to be tuned 
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precisely. This controller is called a "Rudimentary 
Controller" (cf. Fig. 12). 

The organization process of the controller which is 
initiated by a rudimentary controller is introduced as 
illustrated in Fig. 16. The followng operations need to 
OCCUr: 

A. Pre-Learning: initializing the controller 
network by learning the control actions from a 
rudimentary controller, 
B. Forward Modeling: making the forward model 
network by learning the motion of the controlled 
object as controlled by a rudimentary controller, 
and 
C. Evaluation and Adaptation: simultaneously 
adapting the controller network according to the 
evaluation of motion and improving the forward 
model network. 

SONCS FOR THE SMALL TEST-BED PW45 

The SONCS is applied to the longitudinal motion 
control of PW4515 which is a small untethered test-bed 
(7 kg" in dry weight and 45 cm in length) for investi- 
gation of the control system for the PTEROA150 

Table 1. I/O system of the neural networks in the SONCS for PW45 

Modules Controller Forward model 

O(t) O(t) d(t)-do O(t) O(t) d(t)-d. 
Input d(t) 6e(t- 1) d(t) 6e(t) 

Output (~e(l) (9(t + 1) d(t + 1)-d0 

Number of layers 3 3 

Number of neurons 
Input layer 5 8* 
Hidden layer 3 3 
Output layer 1 2 

* Includes recurrent neurons. 

Vehicle. The structure of the SONCS for PW45 is 
illustrated in Fig. 17. I/O systems of the controller 
network and the forward model network are shown in 
Table 1. The objective of the control is to keep the 
vehicle at the desired depth do, while keeping the 
pitching rate 0 =0 rad/s (cf. Fig. 4). The following 
procedures are carried out on the PW45 while it is 
actually swimming in a tank. 

Rudimentary fuzzy control 

A simple fuzzy controller, which is defined by the 
algorithm shown in Fig. 18, is adopted as a rudimentary 
controller. Since the function of a fuzzy controller is 
more understandable than neural networks, it is easier 
to make the rules for control according to only qualita- 
tive knowledge of the vehicle's control actions and 
motion. The rules are almost the same as those of the 
supervisor in the previous section, but they have been 
tuned a little after considering the miserable experi- 
mental results (cf. Fig. 9). Figure 19 shows the experi- 
mental results of motion of the vehicle controlled by 
this rudimentary fuzzy controller. 

Pre-learning of controller 

The learning steps are executed 500 times on the data 
set derived from measurements taken while the vehicle 
is controlled by the rudimentary controller. The data 
set consists of 20 sets of measurements and their 
numerical complements in random order. It was found 
that 500 iterations were required for the neural network 
controller and that without the use of the numerical 
complements, substantially more iterations are 
required. The top of Fig. 21 shows the experimental 
results of motion of the vehicle controlled by this initial 
controller network. It should be noted that the con- 
troller network has no specific objective at this moment 
and only tries to imitate the control actions of the 
rudimentary controller. 
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Fig. 21. Adaptation process of the controller network (cruising speed is about 1 m/s). 
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Forward modeling 

The  fo rward  m o d e l  ne twork  which has  r ecu r ren t  
connec t ions  f rom the h idden  layer  to the input  layer  is 
se lec ted  for  the  e s t ima t ion  of  the  mo t ion  of  PW45 as 
i l lus t ra ted  in. Fig.  17. The  inputs  of  the  fo rward  m o d e l  
are 0, t~, d,  d and  d~ and the ou tpu t s  a re  0 and d which 
are to be e v a l u a t e d  accord ing  to the  ob jec t ive  o f  the  
sys tem.  T h r e e  t h o u s a n d  t imes  of  l ea rn ing  are  ca r r i ed  
out  with the  m o t i o n  da t a  for  20 s (cf. Fig. 19). F r o m  
Fig. 20, it can be said that  the  l e a rned  fo rwa rd  mode l  
ne twork  can prof ic ient ly  e s t ima te  the  PW45 ' s  mot ion .  

Evaluation and adaptation 

The  fo l lowing eva lua t ion  po ten t i a l  is i n t roduced  for  
the  a d a p t a t i o n  of  the  con t ro l l e r  of  PW45 ' s  hor izon ta l  
swimming  at  a des i r ed  dep th  do. 

f 
l 

E * = ~  { a l b 2 + a 2 ( d - d , , ) Z } d t ,  (11) 

where  a~ and a 2 are  weight ing  p a r a m e t e r s  on t~ and d, 
respect ive ly .  

A d a p t a t i o n  of  the  con t ro l l e r  n e t w o r k  is ca r r i ed  out  5 
t imes  with d0 = 1.0 m. F igure  21 shows the e x p e r i m e n t a l  
resul ts  of  m o t i o n  o f  PW45 con t ro l l ed  by the u p d a t e d  
con t ro l l e r  n e t w o r k  af te r  each  a d a p t a t i o n .  It is shown 
tha t  the  con t ro l l e r  n e t w o r k  is g radua l ly  gaining the 
abi l i ty  to k e e p  the  dep th  of  PW45 at the  des i r ed  va lue  
dcj. A f t e r  5 t imes  of  a d a p t a t i o n ,  the  con t ro l l e r  n e t w o r k  
acqui res  sa t i s fac tory  abi l i ty  to con t ro l  PW45 hor izon-  
tal ly at the  dep th  d0 = 1.0 m. 

CONCLUDING REMARKS 

In this p a p e r  two types  of  n e u r a l - n e t w o r k - b a s e d  
con t ro l  sys tems are  i n t roduced  and app l i ed  to the  
longi tud ina l  m o t i o n  cont ro l  of  the  t es t -bed  vehicles  of  

P T E R O A ,  
The  superv i sed  lea rn ing  a p p r o a c h  is i m p l e m e n t e d  

a long with a fuzzy con t ro l l e r  as a superv isor .  It is shown 
that  the  advan t ages  of  the  neura l  ne tworks ,  such as 
f lexibil i ty of  the  I / O  se lec t ion  and sa tu ra t ing  charac te r -  
istics, y ie ld  m o d e r a t i o n  of  the  cont ro l  ac t ions  and an 
i m p r o v e m e n t  of  the  robus tness  agains t  d i s tu rbances .  

In o r d e r  to dea l  with u n k n o w n  dynamics  of  the  
con t ro l l ed  ob j ec t  and  g e n e r a t e  an a p p r o p r i a t e  con- 
t ro l le r ,  the  unsupe rv i sed  lea rn ing  sys tem,  which is 
cal led " S O N C S " ,  is i n t roduced .  The  S O N C S  is app l i ed  
to the  con t ro l  p r o b l e m  of  the  u n t e t h e r e d  tes t -bed  
vehicle  PW45 and has  succeeded  in gene ra t ing  an 
a p p r o p r i a t e  con t ro l l e r  for  hor izon ta l  swimming  at  a 
des i r ed  dep th .  T h o u g h  a large n u m b e r  of  i t e ra t ions  are 

necessa ry  for  the  p re - l ea rn ing  and the fo rward  mode l -  
ling, it is shown that  the a d a p t a t i o n  p r o c e e d s  quickly  to 
the goal .  

A neura l  ne tw ork  is an a t t rac t ive  tool  for  rea l i za t ion  
of  a cont ro l  sys tem which is r equ i r ed  to be both  au ton-  
omous  and ab le  to deal  with unce r t a in ty  of  the  real  
world.  The  S O N C S  is one  rea l iza t ion  of  the  neura l -  
n e t w o r k - b a s e d  adap t ive  cont ro l  sys tem.  It is h o p e d  that  
this is the  first s tep to the  e s t ab l i shmen t  of  an ideal  
cont ro l  sys tem for  u n d e r w a t e r  vehicles ,  which includes  
ski l led in te l l igence .  
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